72 research outputs found

    Performance analysis of joint precoding and MUD techniques in multibeam satellite systems

    Get PDF
    This paper considers interference mitigation techniques in the forward link of multibeam satellite systems. In contrast to previous works, either devoted to receiver interference mitigation (e.g. multiuser detection) or transmitter interference mitigation (precoding), this work evaluates the achievable rates of the joint combination of both techniques. On the one hand, precoding cannot properly mitigate all the inter- beam interference while maintaining a sufficiently high signal-to-noise ratio. On the other hand, the receiver cost and complexity exponentially increases with the number of signals to be simultaneously detected. This highlights that the receiver cannot deal with all the interferences so that in general only 2 signals are jointly detected. As a result, the use of precoding within a coverage area jointly with multiuser detection can both benefit from each other and extremely increase the achievable rates of the system. This is numerically evaluated in a close-to-real coverage area considering simultaneous non-unique decoding strategies. The results show the benefits of this joint scheme that eventually can increase the current precoding performance a 23%.Peer ReviewedPostprint (author's final draft

    NOMA and interference limited satellite scenarios

    Get PDF
    This paper deals with the problem of non-orthogonal multiple access (NOMA) in multibeam satellite systems, where the signals are jointly precoded. It is considered that the number of frames that are simultaneously transmitted is higher than the number of feeds, reducing the precoding interference mitigation capabilities as the system becomes overloaded. In order to solve this problem, we assume that the satellite user terminals are able to perform multi-user detection to mitigate the interference. In the current NOMA approach, it is assumed a successive interference cancellation (SIC) receiver. To increase the spectral efficiency, this paper investigates NOMA with simultaneous non-unique detection (SND). Compared to the case where user terminals perform single user detection (SUD), conventional scheduling heuristic rules do not longer apply in this scenario. Therefore, different scheduling algorithms are proposed considering both SIC and SND strategies. As the numerical evaluations show, SND yields larger average data rates than the SIC receiver. Concerning the scheduling, the best strategy is to pair users with highly correlated channels and the lowest channel gain difference. It is also shown that the sum-rate can be increased in overloaded satellite systems with respect to satellite scenarios, where the number of transmitted frames and feeds is the same.Peer ReviewedPostprint (author's final draft

    Low-complexity interference variance estimation methods for coded multicarrier systems: application to SFN

    Get PDF
    For single-frequency network (SFN) transmission, the echoes coming from different transmitters are superimposed at the reception, giving rise to a frequency selective channel. Although multicarrier modulations lower the dispersion, the demodulated signal is sensitive to be degraded by inter-symbol interference (ISI) and inter-carrier interference (ICI). In view of this, we use channel coding in conjunction either with filter bank multicarrier (FBMC) modulation or with orthogonal frequency division multiplexing (OFDM). To deal with the loss of orthogonality, we have devised an interference-aware receiver that carries out a soft detection under the assumption that the residual interference plus noise (IN) term is Gaussian-distributed. To keep the complexity low, we propose to estimate the variance of the IN term by resorting to data-aided algorithms. Experimental results show that regardless of the method, FBMC provides a slightly better performance in terms of coded bit error rate than OFDM, while the spectral efficiency is increased when FBMC is considered.Peer ReviewedPostprint (published version

    Rate splitting for MIMO multibeam satellite systems

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper deals with the problem of precoding in multibeam satellite system with rate splitting (RS). In contrast to the single-stream (SS) case where a unique private frame is transmitted towards each beam, in RS we consider the simultaneous transmission of a public frame to all intended users superimposed with each private frames. In this context, every user terminal (UT) firstly decodes the public frame which contains data from all UTs at all beams and; posteriorly, its intended private frame which is only decodable by a set of users. With this, each UT receives information from both the public and the private frame, leading to a system sum-rate increase in some cases. This performance increase is evaluated by computing an upper bound of the attainable rates. Moreover, a low-complexity precoding alternative is proposed considering a decoupled design of the precoding of the private frames and public frames. This technique is evaluated considering a real multibeam satellite system. A substantial gain with respect to the current benchmark technique is identified.Peer ReviewedPostprint (published version

    Non-orthogonal transmission techniques for multibeam satellite systems

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Non-orthogonal transmission is a promising technology enabler to meet the requirements of 5G communication systems. Seminal papers demonstrated that non-orthogonal multiplexing techniques outperform orthogonal schemes in terms of capacity, latency, and user fairness. Since it is envisioned that satellites will be an integral component of the 5G infrastructure, it is worth studying how satellite communication systems can benefit from the application of non-orthogonal transmission schemes as well. Contrary to common perception, current communications through a satellite present a different architecture and face different impairments than those in the wireless terrestrial links. In particular, this work aims to describe different non-orthogonal schemes that are suitable for the forward link (i.e., satellite to user). In contrast with the return link of the satellite (i.e., user to satellite), where the use of non-orthogonal transmission schemes has been widely studied, less effort has been devoted to the forward link. In light of this, this article provides an overview and a novel taxonomy that is based on the forward link of different non-orthogonal multibeam transmission schemes. Finally, guidelines that open new avenues for research in this topic are provided.Peer ReviewedPostprint (author's final draft

    Space-time rate splitting for the MISO BC with magnitude CSIT

    Get PDF
    A novel coding strategy is proposed for a broadcast setting with two transmitter (TX) antennas and two single-antenna receivers (RX). The strategy consists of using space-time block coding to send a common message (to be decoded by both RXs) across the two TX antennas, while each TX antenna also sends a private message to one of the RXs. The relative weight of the private and common messages from each TX antenna is tuned to maximize the instantaneous achievable sum-rate of the channel. Closed-form expressions for the optimal weight factors are derived. In terms of the generalized degrees of freedom (GDoF) metric, the new scheme is able to achieve the sum-GDoF with finite precision channel state information at the transmitter (CSIT) of the two user broadcast channel. Moreover, as opposed to the existing rate-splitting schemes, the proposed scheme yields instantaneous achievable rates that are independent of the channel phases. This property is instrumental for link adaptation when only magnitude CSIT is available. Our numerical results indeed demonstrate the superiority of the scheme for the 2-user setting in case of magnitude CSIT. Extension to a more general K -user scenario is briefly discussed.Grant numbers : SatNEx IV - Satellite Network of Experts IV project. © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    Adjacent beams resource sharing to serve hot spots : a rate splitting approach

    Get PDF
    This work addresses the uneven traffic demand scenario in multi-beam satellite systems, in which a hot-spot beamis surrounded by cold beams. After partitioning the hotspot beam in different sectors, resource pulling from coldneighbouring beams is allowed following an aggressive frequency-reuse scheme. As a consequence, the level ofthe co-channel interference within the hot-spot beam increases. A scheme known as Non-Coherent Rate-Splitting (NCRS)is employed to cope with this interference, based on the exclusive use of magnitude channel state information at the transmitter (CSIT).The receiver complexity is increased with respect to full CSIT precoding schemes, which are considered for benchmarking purposes. Different NCRS strategies are analyzed and compared with several partial and full CSIT schemes. The proposed solution not only shows an improvement with respect to partial CSIT benchmarks, but also displays a competitive performance against full CSIT precoders.</div

    Message-splitting for interference cancellation in multibeam satellite systems

    Get PDF
    This paper investigates a novel technique to deal with the interference in the forward link of multibeam satellite systems when aggressive frequency reuse schemes are employed. Taking into account only magnitude information about the forward channel, the gateway judiciously splits the messages to be transmitted into private and public parts. At the receive terminals, partial cancellation of the public messages is applied prior to private message detection. The practical significance of the absence of channel phase information is stressed and complemented by some additional insights on the implementation. Our numerical results show that, in terms of average total throughput, this technique combined with a 2-colour frequency reuse scheme can outperform a classic orthogonal system with a conservative 4-colour frequency reuse scheme, despite the additional co-channel interference.Grant numbers : SatNEx IV - Satellite Network of Experts IV. © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
    corecore